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D E D I C A T E D  TO PROFESSOR P A U L  H A G E N M U L L E R  ON HIS 70th B I R T H D A Y  

A review of exper imenta l  data  relating to the Verwey t ransformat ion in Fe3(l-~)O4 and in Fe3_xZnxO 4 
is presented.  The  transi t ion from first order  to higher order with increasing 8 or x is rationalized by 
represent ing the hos t  crystal  in terms of octahedral  site pairs that  share electrons be tween  the two 
sites. The  individual octahedral  interst ices can remain unoccupied  or become occupied by localized or 
i t inerant electrons.  The application of  the order-disorder formal ism leads to the const ruct ion of a free 
energy express ion  which mus t  be optimized. If the result ing relations are simplified by adopting energy 
parameters  associa ted  with several  limiting cases ,  one automatical ly obtains the model  o f  Str~ssler and 
Kittel. This theory had  previously been demons t ra ted  to be very useful in rationalizing both the 
the rmodynamic  and the t ranspor t  propert ies of  magneti te .  �9 1992 Academic Press, Inc. 

1. Introductory Comments 

The phase transition in magnetite has 
been the subject of a large number of studies 
ever since the original report by Millar (1) 
of a heat-capacity anomaly near 120 K. A 
further impetus was provided by Verwey 
(2), who reported a concomitant electrical- 
resistivity anomaly in that temperature 
range. Although it was clear from Verwey' s 
studies that the oxygen/metal ratio in mag- 
netite plays a crucial role in the detailed 
manifestations of the phase transformation, 
this feature remained largely unappreciated 
by later workers. For this reason much of 
the work reported in the literature has failed 
to clarify the underlying issues pertaining to 
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the Verwey transition. At a later stage the 
research by Dieckmann and Schmalzried (3, 
4) and by Gmelin and co-workers (5) in- 
volved detailed and careful studies of varia- 
tions in oxygen stoichiometry and their 
effects on the physical properties of magne- 
tite. However, it was not until very recently 
that a new feature was uncovered (6-13), 
namely, that the Verwey transition in 
Fe3o_8)O 4 was of first order in the range 
-0.0005 -< 6 < 6c -= 0.0039, and of second 
order in the range 8c < 8 < 36c. This was 
established through magnetization, thermo- 
dynamic, electrical, structural, and M6ss- 
bauer studies on single crystals of high pu- 
rity that had been carefully annealed in a 
CO/CO 2 buffering atmosphere. Attempts to 
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FIG. 1. Variation of the Verwey transition tempera- 
ture with 38 in Fe3( 1 a)O 4 and with x in Fe3_xTi~O 4. 

ative to the ideal FeO4/3 composi t ion per  
mole of  iron. A proper  justification of  the 
x = 38 relation involves e lementary  but 
lengthy arguments  that are presented else- 
where (17). 

In what  follows we a t tempt  to provide a 
simple f ramework  model for the rationaliza- 
tion of the observed alteration in the charac-  
ter of  the Verwey  transition with doping by 
vacancies  or by zinc. The present  exposit ion 
generalizes earlier prel iminary analyses  (18, 
19): a more detailed interpretat ion is still in 
the early stages of  development .  

2.0 

1.5 work  with materials in the range 8 > 3a~ 
proved  unsuccessful  because  of the proxim- --, 

1.0 
ity of  the magne t i t e -hemat i t e  phase  bound- E 

o 0 . 5  ary. Similar results have recently been re- 
ported (14-16) for  the Zn~Fe3_~O3 system,  v 0.0 
with the cor respondence  x = 3~, except  that Q- - o  5 
it is obviously now possible to explore the ~- -1.0 

hi? 
composi t ion region x > 36~, where the Ver- .2 ~ -1 5 
wey transit ion was found to disappear  alto- 

-2.0 
gether. These  various results are summa-  
rized in Fig. 1, which shows a plot of  the 
Verwey  transition tempera ture  Tv in 
Fe3( 1 a)O4 and in Fe 3_xznxO 4 vs. 38 or x, as 
determined by  various experimental  tech- 
niques detailed in the figure legend. Depar-  1 5 
tures f rom the parent  composi t ion Fe304 .-. 1.0 
lead to a s teady decrease  in Tv; one can 

E 0 5  see the domain of first and second order  v 
transitions and the cutoff  beyond which --~ 0.0 
Fe 3_xZn~O4 fails to show any transitions at 
all. As a further  illustration of  these phe- ~ - 0 5  
nomena  we exhibit in Fig. 2 a plot of  log p ~ -1 0 

o 
vs 1/Tfor  Fe3(~ _toO4 and Fe 3_xZnxO4, where - 
t9 is the resistivity and T is the temperature .  -1 5 
The x = 36 cor respondence  in the electrical 
resistivities, which are representat ive  of  
other  physical  propert ies ,  is very striking. 
This feature  is consistent  with the designa- 
tions Znx/3Fe I x/304/3 and Fe I _bO4/3 for zinc- 
doped and nonstoichiometr ic  magneti te  rel- 
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FIG. 2. Logarithm of resistivity (in ohm-cm) vs. 
reciprocal temperature (K) for Fe m_a)O4 and 
Fe3_ ~Zn~O4. 
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FIG. 3. Site occupancies in bond representation of 
Fe304 lattice: (a) Ground state of distorted lattice. (b) 
Resonant energy configuration; precursor to directed 
drift of carriers in an applied field. (c) Double occu- 
pancy of octahedral site pair. 

observed electronic propert ies  of  magneti te,  
including the Verwey transition. Clearly,  for 
the case where every  Fe z+ is surrounded by 
Fe 3 + units and vice versa  the energy of  the 
sys tem is minimized; however ,  this also rep- 
resents the case of  lowest  entropy.  As usual, 
the physical  characterist ics of  the sys tem 
are then determined by the balance be tween  
these two opposing tendencies,  as specified 
by the global minimum in the free energy. 
We now examine this situation in further  
detail. 

2. The O r d e r - D i s o r d e r  F o r m a l i s m  as a 
M o d e l  for  the  M a g n e t i t e  S y s t e m  

The preceding remarks  make plausible 
the use of  pairs of  octahedral  sites as a very 
rudimentary representat ion of magneti te.  
We simplify further by neglecting configu- 
rations arising f rom the presence  of the very 
low concentrat ions of  Zn 2+ or of  cation va- 
cancies. 

Three possible configurations for occupa-  
tion of 0 - 0  site pairs are shown in Fig. 3 
and in Table I. Relative to the " v a c u u m  
configuration" [Fe 3+, Fe3+], the ground 
state (Fig. 3a) is that in which an extra  elec- 
tron is localized at one of the two 0 sites, 
surrounded by a deep potential  well. This 
incurs a distortion of the type involved in 

At the outset  we focus on the important  
role played by the octahedral  site pairs.  
Consider  the cation distribution in 

2+  3+  2+  3+  (Znx , and in Fe l -x ) [Fe l -x ,  Fel + x ] 0 4  

(Fe3+~rFe2+ ~ 3 +  /c~ where  the units in I t  1 - 9 8 x ' 1  + 6~J~J4 ' 

round and square brackets  denote  ions lo- 
cated in te trahedral  (t) and octahedral  (o) 
sites respect ively.  Those  on t locations are 
not subject to valence fluctuations; those on 
o locations can be considered as basically 
pairs of  Fe 3+ ions sharing an extra  electron 
that can respond to external fields or to tem- 
pera ture  changes.  This a rgument  focuses on 
the impor tance  of  octahedral ly coordinated 
pairs of  interstitial sites for rationalizing the 

TABLE I 

L A T T I C E  REPRESENTATION 

Configurations Probability Energy 

Bond representation 
�9 �9 BB /3 2 SBB 

�9 �9 BA E:BA 
�9 �9 AB 2ill  

8AB 

| �9 CA r ecA 
Site representations 

�9 B 3'2 e2 
0 A y~ e I 
@ C 3'0 ~o 



118 H O N I G  A N D  S P A E E K  

the phase transition from the cubic spinel 
(T > Tv) to the monoclinic (T < Tv) phase. 
A second state (Fig. 3b) of  higher energy 
involves the extra charge carrier in an undis- 
turbed site, where it has access to either 
location with equal probability. This reso- 
nant state is the precursor  to the directed 
drift of  the carrier under  the influence of  an 
external electric field. The state of highest 
energy (Fig. 3c) is that in which two mobile 
charge carriers occupy two adjacent o sites; 
these carriers cannot move  toward each 
other  but can proceed to other  adjacent 
empty sites. In accordance with the above 
scheme we define /30, 2/31, and 132 as the 
probability of  encountering o - o  site pairs in 
the configurations CA, AB or BA, and BB, 
with energies ~CA, '~AB : E;BA, and eBB re- 
spectively. The entries are exhibited in de- 
tail in Table I, part A. 

The possible occupation states of indi- 
vidual sites are shown in Table I, part B. 
There  are three possibilities. A fraction 3"o 
of  the o-sites is occupied by electrons 
trapped through lattice deformations;  the 
corresponding energy is ~0- A fraction 3'1 
-= c 1 is unoccupied;  this quantity is fixed 
through the parameters  8 or x characteriz- 
ing the composit ion of  the solid. The corre- 
sponding energy is el .  A fraction 3"2 =- oq 
represents sites containing mobile carriers; 
this quantity in principle is accessible ex- 
perimentally via resistivity or Seebeck co- 
efficient measurements .  The corresponding 
energy is E: 2. 

The six parameters  /3j and 3"i in Table I 
are not independent.  First, one must take 
account  of the normalization requirements 

/32 + 2/31 +/30 = 1 (2.1) 

3'2 + 3"1 + 3"0 = 1. (2.2) 

In addition one must adopt the consistency 
condition for mobile charge carriers, which 
is derived as follows: In the bond and 
site representations there are a total of 
(Z/2)L(2/31 + 2/32) + (1 - Z)L3" 2 carriers 

that can respond to the imposition of  an 
external field. In the real lattice that number  
is LT2. These two quantities must match;  
this leads to the consistency requirement  

/~2 -~- /31 = 'Y2 ~- 0~t" (2.3) 

Finally, one should note again the require- 
ment that the composit ion of  the samples be 
fixed, so that 

Yl = Cl, (2.4) 

where cl is the fraction of o-sites that do not 
contain any extra electrons,  whether  mobile 
or frozen. 

Thus, the number of independent  vari- 
ables is reduced from six to two. We select 
/3~ and 3/2 as the independent set, thereby 
focusing on the number of electrons that can 
respond to the applied external field. It is 
also expedient to rewrite Eqs. (2.1) and (2.3) 
a s  

/32 : 3"2 - /31,  /30 = 1 - 3"2 - /31.  ( 2 . 5 )  

3. Mathematical Development 

On the basis of the probability variables 
and energy parameters introduced earlier it 
is straightforward to construct  the energy 
and entropy for the representat ive figure as- 
semblies. 

The energy of the bond assembly is given 
by 

Z 
Eb = ~ L  (/32~B~ + 2/31eAB + /30~CA) 

Z 
= ~L  (/32U + 2/31~ + SCA), (3.1) 

where 

U--=eBB -- eCA = U(/32), and 

e=--~AB -- ~CA = ~(t31) �9 (3.2) 

One should note that U and e are taken to 
be functions of/32 and/3~, respectively.  U' 
and e ' ,  introduced below, are derivatives 
with respect to the appropriate variable. 
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The energy for the site assembly is 

Es = (1 - Z ) L ( ' ) / 2 8 2  q- Y l e l  -f- Yoeo) 

= (1 - -  Z ) L ( ' y z e  B + T l e A  -1- /30), (3.3) 

where 

/3B ~--- 82 - -  /30' /36 ~ /31 - /30. (3.4) 

In Stirling's approximation the entropy 
for the bond assembly is specified by 

S b =- - k B 2 L ( / 3 2  I n / 3 2  

+ 2/31 In/31 "~- /30 In/30), (3.5) 

where k B is Boltzmann's  constant. The en- 
tropy of the site assembly is 

S S = --kB(1 -- Z ) L ( T  2 In Y2 
+ y l l n y l  + y01n70). (3.6) 

We now assemble (3.1), (3.3), (3.5), (3.6) 
to obtain the Helmholtz free energy func- 
tion 

F = E b + E s - TS  b - TS  s 

= Z L [ f l z O  + 2/31e + ~CA] 

+ ( I  - -  Z ) L [ ' Y 2 e  B + ")/ lea + 80] 

+ kBTZL[/321nf12 + 2/31 ln/31 + B01n/30] 

+ kBT( 1 - Z ) L ( y z l n T 2  + y l l n y l  + Y01nY0) �9 
(3.7) 

Eq. (3.7) must then be optimized with re- 
spect to/31: 

d F  Z r , d/3 2 . d/3 2 
dill = 0  = ~ L [ /32U ~ + O-'d-~l + 2e 

+d/3  
+ 21nfll + 2 + (ln/30) + dill ] .  

(3.8) 

The above relation may be rearranged as 

///3~J3~ = ~ { ( U - 2 e )  - /32U' 

- 2/31e'} =-- 
- -  g 

kB T,  (3.9) 

o r  a s  

/32flo/fl~ = e x p ( - R / k B T )  =- C.  (3.10) 

Eq. (3.10) may be solved for/31 by introduc- 
ing Eqs. (2.5). One obtains a quadratic form 
in/31 with the solution 

ill = 

2(11 C){  1 - N / I - 4 ( 1 -  C ) a l ( 1 - c q ) }  

(3.11) 

where the positive sign ahead of the square 
root was discarded to render/31 -< 1. Note 
that/32 and/3o in Eq. (2.5) are now functions 
of oq alone. 

Eqs. (2.5) may next be introduced into 
Eq. (3.7) to substitute for the multipliers of 
the logarithmic terms involving/30 and/32. 
On subsequently collecting terms one ob- 
tains an expression in which the quantity 
/31 ln(/3oflJ/3~) may be eliminated by use of 
Eq. (3.9). After further simplification one 
obtains the optimized function 

F~l = Z L [ f l 1 U  + fl l(Yl  - i l l)  U'  

- 2/3~e' + 8 C A ]  ~t- (1 - Z ) L [ ' y z e  B 

+ y l eA  + e 0] + ZLkBT[y21n /31  

+ (1 - Y2)ln(1 - ")/2 - /31) ]  

+ kBT(1 - Z ) L [ T 2 1 n T 2  + Yl  lny l  

+ (1 - y l - y z ) l n (  1 - Y l - Y 2 ) ] ,  (3.12) 

which makes no reference to the param- 
eter e. 

As a last step one must enforce equilib- 
rium by optimizing Eq. (3.12) through the 
condition dF~l /dY 2 = 0. Account must be 
taken of the dependence of the/3j variables 
on "Y2. The resulting expression furnishes 
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T A B L E  II  

SPECIAL CASES BASED ON EQS. (2.5) AND (3.9) 

(A) C = 0 (B) C = 1 (C) C---> 

~2 = 0 32 = 5̀~ ~2 = 5̀2 
fll = 3'2 flI = Y2( 1 -- Y2) flI = 0 
fl0 = 1 - 5'2 /3 0 = (1 - 5'2) 2 fl0 = I - -  5"2 

an interrelation which may be used to 
convert  Eq. (3.12) into a function 
Ft~lV 2 = Fr 1, T) from which /31 has 
been eliminated. These mathematical steps 
are lengthy though not difficult; however ,  
they tend to obscure the points on which 
we wish to focus. We therefore adopt 
simplifying approximations discussed in 
the next section. 

4 .  S p e c i a l  C a s e s  

Before turning to special cases we note 
that Eq. (3.9), which specifies the optimal 
set of/3a, makes no direct reference to the 
properties of the (! - Z ) L - m e m b e r  point 
figure assembly whose properties are not 
needed here. Hence  we treat the bond-fi-  
gure assembly as the particular item of 
interest and we therefore concentrate  on 
the properties of the (ZL/2)  site pairs re- 
quired to represent  one mole of  Fe304. 
The corresponding free energy may be 
found by returning to Eqs. (3.1) and (3.5) 
and writing 

I ~  b = [ / 3 2  U q-  2file + E:AA ] q -  kBT(flzlnfl2 
+ 2/31 In/31 +/3o In/3o). (4. I) 

For  this special situation we adopt the limits 
C = 0, 1, ~ in Eq. (3. I0). Eqs. (2.1), (2.3), 
and (4.1) then simplify to the special results 
shown in Table II. We consider each of  
these in turn: 

(A) C = 0, under the sufficient condition 
U ~ 0% since f12 = 0 for large but finite U, 

/32U = 0, and U' can be ignored. Equation 
(3.12) now reduces to 

F~I = 2fl18 + eCA + kBT[2fll In fll 

+ (l - 2ill) In(1 - 2f10]. (4.2) 

At this point it is useful to introduce the 
order parameter  to - 2fl I -= 2"y2; since Yz -< 
I - c 1 -< �89 the order  parameter  lies in the 
range 0 -< to -< 1. Then 

F~I  = to e ( 0  ) + eCA + k a T [ t o  I n  O 

+ (1 - to) In(1 - t o ) - t 0 1 n 2 ] .  (4.3) 

Optimization with respect to to via 0/~l/0to 
= 0 yields the expression 

e ( t o ) + 0 e ' ( t o ) =  _ l n ( l _ _ ~ + ) + 1  n2.  
kBT 

(4.4) 

One should note that Eq. (4.3) is formally 
equivalent to the free energy of  a binary 
solution consisting of components  with 
mole fractions to and 1-to; the extra contribu- 
tion arising from the term to In 2 will later 
turn out to be crucial. The condition U ~ 
has reduced the three-level problem to a 
two-level case. 

(B) C = 1, under  the sufficient condition 
that U = 2e and U' = e' = 0. From Table 
II and Eq. (4. l) one now obtains the result 

Eel = 2eoq + ~CA + 2kBT{oq In cq 

+ (1 - ~l) ln(1 - oq)}. (4.5) 

In this manner the original three-level 
problem has again been conver ted  to an 
equivalent quasi-two-level problem in 
which the order  parameter  is now given by 
to = a 1 , 0 -< to -< 1. Again, this is in the form 
of a mixing problem of a binary solution, 
but no extra term appears in Eq.  (4.5), in 
contrast to Eq. (4.3). Note  that only the 
occupation probabilities of  individual sites 
are now encountered in the above equation; 
since there are two sites per bond, the free 
energy of the assembly is P~ = XF2 t~l, so that 
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F~l  = ~to "]- eCA/2 + kBT{al In  o~ 1 

-]- (1 - oL1)ln(l  - al)}, (4.6) 

which quantity may be optimized by the re- 
quirement OP~/Oal = 0. This leads to the 
equilibrium condition 

e(to) + toe' ( to)= _ln(___@__~ ~ (4.7) 
kBT \ l - t o /  

( C )  C -+ o~ under the sufficient condition 
that e --~ ~. This situation is not of interest 
since it places the conduct ion states charac- 
terized by/3~ = 0 out of reach of the thermal 
population. 

5 .  D i s c u s s i o n  

As described in more detail elsewhere (18, 
19), we recover  explicitly the results first 
derived by Str~issler and Kittel (SK) (20) if 
we assume that e is specified by the linear 
relation e(to) = e0 - lhto. In their f ramework 
first and second order transitions were 
treated in a single unified scheme, which 
leads to the following expression for the free 
energy: 

F = (~o - l x t o ) +  

+ kBT[toln to + (1 - to) ln(1 - tO) 
- tO In gt - (1 - to) In go] .  ( 5 . 1 )  

Here  gl and go are the degeneracies of  a two- 
level system. The terms involving g~ and go 
were grafted onto a slightly modified version 
of the standard theory of  mixing of a two- 
component  solution. The application of Eq. 
(5.1) to magnetite was discussed in detail in 
earlier publications (21, 22). To fit the data 
it was necessary to set gl = 2g0 = 2 for 
stoichiometric magnetite, and to set gl = go 
in the second-order  regime, as demanded by 
the theoretical analysis (20) of  Eq. (5.1). 
However ,  it was not clear at the time how 
the two-level scheme was related to the 
magnetite system. 

In the present  approach,  the form of Eq. 
(5.1) is an automatic consequence of  the 

order -d isorder  formalism. In particular, 
Eq. (4.3) corresponds with the expression 
(5.1) with gl = 2g0 = 2; Eq. (4.4) serves as 
a means to determine to as a function of  T 
by numerical techniques. The order  parame- 
ter is found to exhibit a discontinuity at T = 
T v . Similarly, Eq. (4.6) corresponds to (5.1) 
when one takes gl = go = 1 ; the correspond- 
ing order parameter  as calculated from Eq. 
(4.7) is continuous at T = Tv, but its first 
derivative is discontinuous. 

The application of Eqs. (4.2)-(4.7) to the 
analysis of the experimental  results in 
Fe3(1_8)O 4 and in ZnxFe3_xO 4 has been de- 
scribed in detail in earlier publications (16, 
18, 21, 22) and need not be repeated. The 
success of  such a simple approach in con- 
fronting experimental thermodynamic and 
transport  phenomena in the magnetite sys- 
tem shows that the present model serves as a 
useful starting point for a more sophisticated 
theory. It is planned to investigate less sim- 
plistic models in the future. 
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